1. Length = 6 m; height = 7 m 2. Length = 8 cm; width = 5 cm; height = 8 cm
1. 1. Length = 6 m; height = 7 m 2. Length = 8 cm; width = 5 cm; height = 8 cm
Answer:
1. 42m
2.320cm
Step-by-step explanation:
Operation used Multiplication
2. 2m is base 14 m is the height8 m is base 2
Answer:
Step-by-step explanation:
Area of Big square = 8^2 = 64
Area of small square = 2^2=4
Area of ractangle = 4 x2 = 8
Total AREA = 76m^2
3. Height = 6 m Base = 8 1/2 m Find the area of the triangle
Answer:
[tex]a = {24m}^{2} [/tex]
#CarryOnLearningAnswer: A=24m²
solution:
A=hbb 2=6·8 2=24m²
i hope this helps!
4. The base of a parallelogram 1is 21 m and its height is 8 m.Find its area.A. 120 sq. m.B. 150 sq. m.C. 160 sq. m.D. 168 sq. m.
Answer:
D. 168 sq. m.
Sana makatulong
5. 1. What is the surface area of a rectangular prism with a length of 30 m, a height of 32 m, and a width of 6 m? 2. What is the surface area of a cube with an edge of 25 cm? 3. What is the surface area of a cylinder with a height of 10 m and a base radius of 8 m?need asp.
Answer:
sheeesh
[tex] \green{ \rule{10pt}{900000000000pt}} \red{ \rule{10pt}{900000000000pt}} \pink{ \rule{10pt}{900000000000pt}} \orange{ \rule{10pt}{900000000000pt}} \blue{ \rule{10pt}{900000000000pt}} [/tex]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
6. 8. ) A tower building has 20 story's. Each story is 3 2/10 m high. What is the total height of the building if the pent house's height is 2 3/4? A. 66 1 m 4 B. 22 2 m C. 33 1 m 4 4 D. 66 3 m 4
Answer:
C that's my answer
Step-by-step explanation:
I will do it today
7. 1. Which has a greater area, atriangle with a base of 5 manda height of 6 m, or a rectanglewith a length of 8 m and awidth of 2 m?*
Answer:
A rectangle with a length of 8 m and a witdh of 2m
Step-by-step explanation:
A of a triangle=½(bh)
5×6÷2=15m
A of a rectangle=b×h
8×2=16m
8. Find the volume of each figure.1. Rectangular prism length = 6.75 cm width = 5.75 cm height = 4.5 cm2. Cylinder radius = 5 cm height = 0.75 cm3. Sphere radius = 4.2 cm4. Cone radius = 5.5 cm height = 12.5 cm5. cube edge = 5.4 cm6. A cube having an edge of 8 cm.7. A rectangular prism with a length of 12.5 m, a width of 5.3 m, and a height of 4.6 m.8. A sphere whose radius is 5 cm.9. A cone with a radius of 3 m and a height of 12 m.10. A pyramid whose base is 8 cm long and 8 cm wide and whose height is 10cm.Pa answer po need ko lng po thank you!
Answer:
1. 174.65625 cm
2.3.75 cm
4.68.75
5.850.3056
6.4,096
7.304.75
9.36
10.640 cm
Explanation:sorry ung mga laktaw dko alam ung sagot
9. VI. Find the volume of each. 1. rectangular prism length : 7 cm width: 4 cm height : 5 cm 2. rectangular prism length: 12 m width: 10 m height: 10 m 4. cube side: 15 cm 3. cube side: 9 m 5. rectangular prism length: 14 m width: 8 m height: 3 mpls I need it right now
[tex]\huge\purple{Answer : }[/tex]
1. Rectangular prism;
Lenght - 7cm| Width - 4cm| Height - 5
Area : 35
2. rectangular prism;
length: 12m| width: 10m| height: 10 m
Area : 100
5. rectangular prism;
length: 14m| width: 8m| height: 3 m
Area : 24
{Sorry kung diko nagawa yung 3 at 4 hindi ksi kumpleto.}
How to find the area?
Ex.
Lenght 7
Witdh 8
height 4
You need to × 8 and 4
8 × 4 = 32
32 IS the area.
#CarryOnLearning!10. Directions Illustrate the following solid figures using the clues below 1. A cone with a radius of 8 m. 2. A pyramid having a base of 13 m and a height of 25 m. 3. A rectangular prism with 8 m length, 5 m width and a 6 m height. 4. A cylinder with a radius of 7cm and 12 cm in height. A cone with 15 in. base and 24 in height.
Answer:
study hard ambition success and then we can protect the world11. Direction: complete the table by finding the volume. Box Length Width Height Volume 1.) 15 cm 4 cm 6 cm 2.) 8 m 8 m 8 m 10 m 3.) 5 m 7 m 4 cm 4.) 12 cm 8 cm 7m 7 m 5.) 7m
Answer:
The width is 24 feet
Step-by-step explanation:
1. V=l×h×w , where V= Volume, l= length, h= height, and w= width.
2. 11,232=13×36×w.
3. 11,232=468×w.
4. Divide both sides by 468 .
5. 11,232468=w.
6. 24=w.
7. Hence, the width is 24 feet.
12. Learning Task 3: Solve the following word problems.1. A residential lot in the shape of parallelogram has base of 16 m and a height of 13 m. What is the area?2. A parallelogram has a base of 8 cm and a height of 6 cm. What is the area of a parallelogram with base and height twice long?3. A field is in the shape of a right triangle with a base of 16 m and a height of 9 m. What is the area?
Answer:
1. 104m²
2. 24cm²
3. 72m²
Step-by-step explanation:
tama yan pa brainlist nalang
13. A rectangular prism has a length of 12 1/2 m, width of 21 1/4 m, and height of 7 1/8 m. Solve for its surface area. *.
Answer:
kumain kanaba Kain ka muna para alam mo
Step-by-step explanation:
explanation kain kana para alam mo sagutin behhh
14. find the are of each polygon of figure described below. 1. square: 24 cm long A= 2. trapezoid : bases 4.5 and 4 m long , height 3 m long A= 3. circle: diameter 10 cm A= 4. triangle: base 8 cm long, height 4 cm long A= 5. rectangle: base 11 m long , height 8 m long A=
Answer:
8.) What is the process needed?
Mulptiply the width by 2 and add 10 to find the length
Find the perimeter by adding the length and with then multiply them by 2
9.) What is the number sentence or formula?
\sf \large L = W \times 2 + 10 = nL=W×2+10=n
\sf \large P = 2(L + W)P=2(L+W)
10.) What is the answer?
\sf \large L = 20 \times 2 + 10 = 50 \: cmL=20×2+10=50cm
\sf \large P = 2(50 \: cm + 20 \: cm) = \boxed{ \sf 140 \: cm}P=2(50cm+20cm)=
140cm
↬ Therefore the perimeter is 140 cm
15. B. Solve for the volume of the following. Write your answers on the space provided for.1. Cylinderradius = 7 cmheight = 11 cmVolume =2. Coneradius = 4 mheight = 9 m Volume =3. Sphere radius = 5 cm height = 22 cm Volume =4. Rectangular Prism length = 2 m width = 6 m height = 8 mVolume =5. Pyramid length = 25 m width = 13 m height = 19 mVolume =
*̣̥☆·͙̥❄‧̩̥࿌ིྀ྇˟͙☃️˟͙࿌ིྀ྇‧̩̥❄·͙̥̣☆*̣̥
[tex]\blue{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]
1. Cylinder
radius = 7 cm
height = 11 cm
Volume = 1693cm³
[tex] \sf{Formula:} \\ \sf{V = \pi {r}^{2}h } \\ \\ \sf{Solution:} \\ \sf{V = \pi \times {7}^{2} \times 11 } \\ \sf{V = 539\pi} \\ \sf{V = 1693 {cm}^{3} }[/tex]
[tex]\blue{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]
2. Cone
radius = 4 m
height = 9 m
Volume = 150.79m³
[tex]\sf{Formula:} \\ \sf{V = \frac{1}{3}\pi {r}^{2} h } \\ \\ \sf{Solution:} \\ \sf{V = \frac{1}{3} \times \pi \times {4}^{2} \times 9 } \\ \sf{V = 48\pi} \\ \sf{V = 150.79 {m}^{3} }[/tex]
[tex]\blue{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]
4. Rectangular Prism
length = 2 m
width = 6 m
height = 8 m
Volume = 96m³
[tex]\sf{Formula:} \\ \sf{V = l \times w \times h} \\ \\ \sf{Solution:} \\ \sf{V = 2 \times 6 \times 8 } \\ \sf{V = 96 {m}^{3} }[/tex]
[tex]\blue{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]
5. Pyramid
length = 25 m
width = 13 m
height = 19 m
Volume = 2,058.3m³
[tex]\sf{Formula:} \\ \sf{V = \frac{l \times w \times }{3} } \\ \\ \sf{Solution:} \\ \sf{V = 2 5\times 13 \times 19 } \\ \sf{V =6,175 \div 3 } \\ \sf{V = 2,058.3 {m}^{3} }[/tex]
[tex]\blue{ \overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]
*̣̥☆·͙̥❄‧̩̥࿌ིྀ྇˟͙☃️˟͙࿌ིྀ྇‧̩̥❄·͙̥̣☆*̣̥
16. A rectangular prism has a length of 12 1/2 m, width of 21 1/4 m, and height of 7 1/8 m. Solve for its surface area. *.
ANSWER:
A=966
SOLUTION:
A=2(wl+hl+hw)=2·(21·12+7·12+7·21)=966
#learnwithbrainly
17. 1. basebase = 3 mheight = 8 mArea2.base= 9 cmheight =Area = 36 cm?
1. Area= 24 m
2. Height= 4 cm
thank me later ❤️
18. LEARNING TASK NO. 6 Solve for the following. 1. What is the volume of a sphere with a diameter measuring 13 cm? 2. A cylinder has a radius of 5 m and a height of 9. 3 m. What is its volume? 3. What is the volume of the cone with radius of 8 m and a height of 22 m? 4. The base of a pyramid is 7 m by 12 m and its height is 18 m long. What is its volume?
VOLUME
1. 1,149.76 cm³
2. 730.05 m³
3. 1,473.71 m³
4. 504 m³
Solutions:
1. V= 4/3πr³
The diameter is 13 so divide it by 2 to find the value of the radius 13÷2= 6.5
V= 4/3(3.14)(6.5)³
V= 4/3(3.14)(274.625)
V= 1,149.76
The volume of the sphere is 1,149.76 cm³.
2. V= πr²h
V= 3.14(5²)(9.3)
V= 3.14(25)(9.3)
V= 3.14(232.5)
V= 730.05
730.05 m³. is the volume of the cylinder.
3. V= ⅓πr²h
V= ⅓(3.14)(8²)(22)
V= ⅓(3.14)(64)(22)
V= ⅓(3.14)(1408)
V= 1,473.71
The volume of the cone is 1,473.71 m³.
4. V= ⅓AH
V= ⅓(7)(12)(18)
V= ⅓(1,512)
V= 504
The volume of the pyramid is 504 m³.
What is Volume?
A mathematical quantity that represents how much three-dimensional space an object or a closed surface takes up is called volume. Any three-dimensional solid’s volume is equal to how much space it takes up. Different shapes have different volumes. The cube, cuboid, cylinder, cone, and other three-dimensional forms and solids were investigated.
Volume of a Sphere
The sphere is a three-dimensional circular solid shape with equal distances between all points on its surface. The sphere’s radius is the fixed distance between two points, and the sphere’s center is the fixed point. As the circle is turned, we will see a change in shape. The three-dimensional shape of a sphere is thus generated by rotating a two-dimensional object known as a circle.
Volume of a Cylinder
A cylinder is made up of several congruent disks placed one on top of the other. To figure out how much space a cylinder takes up, we first figure out how much space each disk takes up and then add them together.
Volume of a Cone
The capacity or space of a cone is defined by its volume. A cone is a three-dimensional geometric object with a circular base and a point called the apex or vertex. A cone is made up of a series of line segments, half-lines, or lines that connect a common point, the apex, to all the points on a base that are not in the same plane as the apex.
Volume of a Pyramid
A pyramid is a single-base polyhedron figure. A polygonal figure serves as the pyramid’s basis. As a result, the method for calculating a pyramid’s volume and surface area will be based on the pyramid’s base construction and height.
What is the volume of a sphere? brainly.ph/question/104148. What is the volume of cylinder? brainly.ph/question/104970. What is the volume of a cone. brainly.ph/question/108738
#BRAINLYEVERYDAY
19. 7. The length of a rectangular prism is 5m, the width is 4 m and the height is 7 m. Find its estimated volume. 1) 140 m³ 2) 130 m³ 3) 120 m³ 4) 110 m³ 8. A rectangular container was filled with 432 m³ of sand. Find the height of the container if the width is 8m and the length is 9m 1) 5 m 2) 6 m 3) 7 m 4) 8 m 9. Read the temperature in the given thermometer in degrees celsius. dreamplint.US 1) 24 °C2) 26 °C 3) 29 °C 4) 30 °C 7. The length of a rectangular prism is 5m , the width is 4 m and the height is 7 m . Find its estimated volume 1 ) 140 m³ 2 ) 130 m³ 3 ) 120 m³ 4 ) 110 m³ 8. A rectangular container was filled with 432 m³ of sand . Find the height of the container if the width is 8m and the length is 9m 1 ) 5 m 2 ) 6 m 3 ) 7 m 4 ) 8 m 9. Read the temperature in the given thermometer in degrees celsius . dreamplint.US 1 ) 24 ° C 2 ) 26 ° C 3 ) 29 ° C 4 ) 30 ° Ci will give prize for willing to answer
Answer:
7. 1) 140m³
8. 2) 6m
9. dunno what the given thermometer means
Step-by-step explanation:
20. computation and classification of this following:1. weight : 43 kg.height: 5.3 m. 2. weight: 54 kg.height: 4.6 m.3. weight: 33 kg.height: 4.3 m.4. weight: 36 kg.height: 4.5 m.5. weight: 50 kg.height: 5.7 m.6. weight: 33 kg.height: 4.3 m.8. weight: 31 kg.height: 3.3 m.9. weight: 34 kg.height: 4.3 m. pa-help po, thanks.
Answer:
sorry I don't know that
Explanation:
because iwan talaga sorry hehe
21. LEARNING TASK NO. 3 Find the volume of the following:Rectangular Prism| Length | Width | Height | Volume |8 cm - 4 cm - 12 cm23 cm - 18 cm - 9 m35 cm - 20 cm - 16 mCube | Side | Volume |10 cm 15 cmTriangular Prism| Base Area | Height | Volume |6 cm & 3 cm - 11 cm8 m & 5 m - 13 mPyramid| Base Area | Height | Volume |13 cm & 20 cm - 15 m 40 m and 35 m - 25 mLEARNING TASK NO. 4 Find the volume of the following. Cylinder| Radius | Height | Volume |5 m - 16 m 8 cm - 27 m3 m 1 - 8 mSphere| Radius | Volume |3 m7 cm12 cm16 mCone| Radius | Height | Volume |2 m - 9 m11 cm 1 - 4 cm
Answer:
1. Cylinder
radius = 7 cm
height = 11 cm
Volume = 1693cm³
V=πr
2
h
Solution:
V=π×7
2
×11
V=539π
V=1693cm
3
2. Cone
radius = 4 m
height = 9 m
Volume = 150.79m³
\begin{gathered}\sf{Formula:} \\ \sf{V = \frac{1}{3}\pi {r}^{2} h } \\ \\ \sf{Solution:} \\ \sf{V = \frac{1}{3} \times \pi \times {4}^{2} \times 9 } \\ \sf{V = 48\pi} \\ \sf{V = 150.79 {m}^{3} }\end{gathered}
Formula:
V=
3
1
πr
2
h
Solution:
V=
3
1
×π×4
2
×9
V=48π
V=150.79m
3
4. Rectangular Prism
length = 2 m
width = 6 m
height = 8 m
Volume = 96m³
\begin{gathered}\sf{Formula:} \\ \sf{V = l \times w \times h} \\ \\ \sf{Solution:} \\ \sf{V = 2 \times 6 \times 8 } \\ \sf{V = 96 {m}^{3} }\end{gathered}
Formula:
V=l×w×h
Solution:
V=2×6×8
V=96m
3
5. Pyramid
length = 25 m
width = 13 m
height = 19 m
Volume = 2,058.3m³
\begin{gathered}\sf{Formula:} \\ \sf{V = \frac{l \times w \times }{3} } \\ \\ \sf{Solution:} \\ \sf{V = 2 5\times 13 \times 19 } \\ \sf{V =6,175 \div 3 } \\ \sf{V = 2,058.3 {m}^{3} }\end{gathered}
Formula:
V=
3
l×w×
Solution:
V=25×13×19
V=6,175÷3
V=2,058.3m
3
#carryonlearning-princesshallares
Answer:
LEARNING TASK NO. 3
1.) V=6440
Solution
V=whl=23·35·8=6440
-V=1440
Solution
V=whl=18·20·4=1440
-V=1728
Solution
V=whl=9·16·12=1728
2.)Answer:
103=1000
103=1000
Solution:
103=10×10×10=1000
103=10×10×10=1000
-Answer:
153=3375
153=3375
Solution:
153=15×15×15=3375
153=15×15×15=3375
3.) nasa picture
4.) same
LEARNING TASK NO. 4
1.)Cylinder Calculator
ENTER CYLINDER RADIUS >
ENTER CYLINDER HEIGHT >
5
CALCULATE
16
CLEAR ALL
AREA =157.07963267948966
VOLUME=0
CROSS SECTION=78.53981633974483
-Cylinder Calculator
ENTER CYLINDER RADIUS >
8
ENTER CYLINDER HEIGHT >
27
CALCULATE CLEAR ALL
AREA =1759.291886010284
VOLUME =5428.672105403162
CROSS SECTION =201.06192982974676
-Cylinder Calculator
ENTER CYLINDER RADIUS >
3
ENTER CYLINDER HEIGHT >
8
VOLUME =72 π m3
2.)36 π m3
-457.333333 π cm3
-2304 π cm3
-5461.33333 π m3
3.)12 π m3
-161.333333 π cm3
Step-by-step explanation:
Radius = r
Height = h
Surface Area = 2(π r2) + h(2πr)
Volume = (π r2)h
Cross Section (circle) = π r2
22. 1.Corona KateWeight: 43 kg.Height: 1.62 m.BMI:Weight: 54 kg.Heicist: 1.47 m.BMI:2.Quarantina Facilidad3.Socy De stanceWeight: 52 kg.Height: 1.54 m.BMI:Weight: 33 kg.Height: 1.31 m.BMI:4.Sonny Tizer5.Ma. DistanciaWeight: 36 kg.Height: 1.37 m.BMI:6.Prince Covid IIIWeight: 50 kg.Height: 1.74 m.BMI:7.Covyd BryantWeight: 33 kg.Height: 1.31 m.BMI:8.Faye ShieldinWeight: 40 kg.Height: 1.55 m.BMI:9.Stayce AthomeWeight: 31 kg.Heignt 1.05 m.BMI:10.Faith MarkWeight: 34 kg.Height: 1.35 m.BMI:
Finding BMI
Formula: BMI = Weight in Kilograms / (Height in Meters) x (Height in Meters)
1. Corona Kate
Weight: 43 kg.
Height: 1.62 m.
BMI: 16.4
2. Quarantina Facilidad
Weight: 54 kg.
Heicist: 1.47 m.
BMI: 25
3. Socy De stance
Weight: 52 kg.
Height: 1.54 m.
BMI: 21.9
4. Sonny Tizer
Weight: 33 kg.
Height: 1.31 m.
BMI: 19.2
5. Ma. Distancia
Weight: 36 kg.
Height: 1.37 m.
BMI: 19.2
6. Prince Covid III
Weight: 50 kg.
Height: 1.74 m.
BMI: 16.5
7. Covyd Bryant
Weight: 33 kg.
Height: 1.31 m.
BMI: 19.2
8. Faye Shieldin
Weight: 40 kg.
Height: 1.55 m.
BMI: 16.6
9. Stayce Athome
Weight: 31 kg.
Heignt 1.05 m.
BMI: 28.1
10. Faith Mark
Weight: 34 kg.
Height: 1.35 m.
BMI: 18.7
// #CarryOnLearning
23. Procedure: Compute the BMI of the following and identify its classification. Show your solution. Use the matrix below. Name Weight and Height Computation Classification 1. Corona Kate Weight: 43 kg. Height: 5.3 m. BMI:___________ 2. 3. Quarantina Weight: 54 kg. Height: 4.6 m. BMI:___________ 4. Covido Rey Weight: 33 kg. Height: 4.3 m. BMI:___________ 5. Ma. Distancia Weight: 36 kg. Height: 4.5 m. BMI:___________ 6. Prince Covid III Weight: 50 kg. Height: 5.7 m. BMI:___________ 7. Covyd Bryant Weight: 33 kg. Height: 4.3 m. BMI:___________ 8. Amy Lorean Weight: 40 kg. Height: 5.1 m. BMI:___________ 9. Covidalyn Weight: 31 kg. Height: 3.3 m. BMI:___________ 10. Faith Mark Weight: 34 kg. Height: 4.3 m. BMI:___________
Answer:
1. b
2. a
3. b
4. d
5. a
6. a
7. a
8. c
9. b
10. c
24. 11. Find the surfacelarea of a Square/Rectangle1. Length-5 cm Height- 5cm2. Length - 12 m Height- 8 m3. Length- 24 cm Height- 13 cm4. Length - 34 m Height- 20 m5. Length-123 cm Height- 79 cm
para masagot mo yan i think u need to multipy those numbers and the answer would be tthe surface area of a square/rectangle. im not sure but i hope makatulong sayo.
25. 1. A triangular wall has a base equal to 4x + 1 and a height of 3x + 2. What is the area of the triangle x = 8 m? solution
Answer:
3.0
kasi ganyan din sagot ko
26. B. Find the volume of each figure 1.Sphere radius = 4.2 cm 2.Cone radius = 5.5 cm height = 12.5 cm 3.cube edge = 5.4 cm 4.A cube having an edge of 8 cm. 5.A rectangular prism with a length of 12.5 m, a width of 5.3 m, and a height of 4.6 m. 6.A sphere whose radius is 5 cm. 7.A cone with a radius of 3 m and a height of 12 m. 8.A pyramid whose base is 8 cm long and 8 cm wide and whose height is 10cm.
Answer:
1. 310 cm3
2. 396 cm2 or 395.97 cm2
3. 157.4 cm3
4. 512cm3
5. 304.75cm
6. 524cm3
7. 113.09m
sana gets mo pre, sensya na blurd. ikaw narin bahala sa 8 kaya mo yan, aral k mabuti
27. Gawain 2: Solve for the volume of the following:1. Square pyramidside = 22 mheight = 32 mvolume=2. Coneradius: 9 mmheight = 17 mmvolume=3. Rectangular pyramidlength = 14 dmwidth = 8 dmheight = 9 dmvolume =
[tex]{\color{red}{\huge{\underbrace{\overbrace{\mathfrak{\:\:\:\:\:\:\:\:Answer:\:\:\:\:\:\:\:\:\:}}}}}}[/tex]
====================================
[tex]1) V= {a}^{2}\frac{h}{3} = 22 *\frac{32}{3} \\ = \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\: 5162.67m\:\:\:\:\: }}}}[/tex]
[tex]2) V=π {r}^{2} \frac{h}{3} = \pi * {9}^{2} \frac{17}{3} \\ =\small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\: 1441.99mm\:\:\:\:\: }}}}[/tex]
[tex]3) V=WHI=8*9*14 \\ =\small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\: 1008dm\:\:\:\:\: }}}}[/tex]
====================================
[tex]\Large\color{blue}{{{\boxed{\tt\red{} \:\:\:\:\:\:\: @Carry \:on\: learning\:\:\:\:\: }}}}[/tex]
[tex]\Large\color{green}{{{\boxed{\tt\red{} \:\:\:\:\:\:\: @Mark\: me \:as\: brainliest\:\:\:\:\: }}}}[/tex]
28. B. Find the volume of each figure1. A cone with a radius of 3 m and a height of 12 m.2. A pyramid whose base is 8 cm long and 8 cm wide and whose height is 10cm.Pa helpp need ko tom na deadlinee
Answer:
A cone with a radius of 3 m and a height of 12 m
V≈113.1V=πr2h
3=π·32·12
3≈113.09734
A pyramid whose base is 8 cm long and 8 cm wide and whose height is 10cm.
V≈213.33V=lwh
3=8·8·10
3≈213.33333
29. I'm asking again Calculate the surface area of each cylinder. Give your answer in terms of π 1. Diameter = 6 cm; height = 8 cm 2. Diameter = 8 ft; height = 12 ft 3. Radius = 10 yd.; height = 4 yd 4. Radius = 4.8 cm; height = 10 cm 5. Diameter = 12.8 m; height = 8.4 m
SURFACE AREA
[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
1. D = 6cm, H = 8cm, SA = 527.5cmSolution:
SA = 2πr² + 2πrhSA = 2π (6cm²) + 2π (6cm) (8cm)SA = 72π + 96πSA = 168 × 3.14 (π)SA = 527.5cm[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
2. D = 8ft, H = 12ft, SA = 1004ftSolution:
SA = 2πr² + 2πrhSA = 2π (8ft²) + 2π (8ft) (12ft)SA = 128π + 192πSA = 320 × 3.14 (π)SA = 1004.8ft[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
3. R = 10yd, H = 4yd, SA = 678.24ydSolution:
SA = 2πr² + 2πrh SA = 2π (10yd²) + (2yd) (4yd)SA = 200π + 16π SA = 216π × 3.14SA = 678.24[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
4. R = 4.8cm, H = 10cm, SA = 446.13cmSolution:
SA = 2πr² + 2πrhSA = 2π (4.8cm²) + (4.8cm) 10cm)SA = 46.08π + 96SA = 142.08π × 3.14SA = 446.13cm[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
5. D = 12.8m, H = 8.4m, SA = 1704mSolution:
SA = 2πr² + 2πrhSA = 2π (12.8m²) + 2π (12.8m) (8.4m)SA = 327.68π + 215πSA = 542.68 × 3.14SA = 1704mNote: The (SA) means surface area.
[tex]\huge\color{yellowgreen}{\overline{\qquad\qquad\qquad\qquad \: \: \: }}[/tex]
30. 1. Given the following solid figures, illustrate and write the formula in the provided table. Illustration (draw) Find the volume figure Rectangular prism Length = 6 m Width = 4 m Height = 3 m Cube Side = 8 cm Cylinder Radius = 5 in Height = 8 in
Answer:
Rectangular PrismV = LWH
V = 9 x 2,
9 Meters
2 M
7 M
VOLUMEV = LWH
V = 4x 5x 3
V = 20x 3
V = 60 Cm
Solution V = L. H. H.4 . 3. 5. = 60 u
Step-by-step explanation:
#Carryonlearing